Из формулы (3.3) с учетом того, что величина по определению не отрицательна, следует
. (4.1)
Левая часть неравенства (4.1) представляет собой частичную сумму положительного числового ряда
. (4.2)
Положительный ряд с ограниченными в совокупности частичными суммами сходится, следовательно, сходится и ряд (4.2). Переходя в (4.1) к пределу при , получим неравенство Бесселя
. (4.3)
Возвращаясь к формуле (3.3), заметим, что с увеличением п величина уменьшается, оставаясь неотрицательной. Следовательно, монотонно убывающая неотрицательная последовательность сходится. из (3.3) получим ее предел
. (4.4)
Если , где – частичная сумма ряда Фурье (3.2), то говорят, что ряд (3.2) сходится в среднем к функции . В этом случае из (4.4) следует
(4.5)
Соотношение (4.5) называется равенством Парсеваля. Это аналог формулы (1.4) для квадрата модуля вектора.
Замечание. Из сходимости ряда в среднем, вообще говоря, не следует его сходимость в обычном смысле слова.
Если равенство Парсеваля выполняется для всех функций из множества , или, что то же самое, для любой функции из ряд Фурье сходится в среднем к этой функции, то ортогональная система называется замкнутой, а соотношение (4.5) – уравнением замкнутости. Замкнутыми системами, например, являются системы функций из упражнения в §3. Доказательство этого факта выходит за рамки настоящего пособия.
Свойства замкнутых систем следующие:
1. Если непрерывная функция ортогональна всем функциям замкнутой системы, то она тождественно равна нулю. Действительно, в этом случае все коэффициенты Фурье равны нулю. Из (4.5) следует, что , и тогда (см. § 2,свойство нормы 2)
Таким образом, к замкнутой системе функций нельзя присоединить никакой новой функции, отличной от тождественного нуля, которая была бы ортогональна ко всем . Это свойство замкнутой системы функций называют ее полнотой.
|
Следствие. Если две непрерывные функции и имеют одни и те же коэффициенты Фурье, то они тождественно совпадают. Доказательство этого утверждения следует найти самостоятельно.
2. Пусть и – коэффициенты Фурье функций и относительно замкнутой ортогональной системы . Тогда
(4.6)
где, как и ранее,
Соотношение (4.6) называется обобщенным равенством Парсеваля. Это аналог формулы (1.3) для скалярного произведения векторов.
Так как для функций коэффициенты Фурье, очевидно, равны , в силу замкнутости системы из (4.5) следует
Вычитая почленно эти равенства и используя тождества
получим равенство (4.6).
3. Если – замкнутая ортогональная система функций, то
, (4.7)
т.е. интеграл от функции можно получить почленным интегрированием ее ряда Фурье. Для доказательства достаточно применить формулу (4.6) к функциям и
и учесть, что в этом случае . Тогда
Отметим, что справедливость формулы (4.7) установлена даже без предположения о сходимости ряда Фурье.
Упражнение. Доказать, что если ряд Фурье сходится равномерно на промежутке [ а, b ] к функции , то он сходится в среднем к этой функции.