Получение гормонов человека генно-инженерными методами




В организме человека вырабатываются десятки различных со­единений, которые участвуют в регуляции метаболических процес­сов. Важное место среди них занимают гормоны, которые условно можно разделить на 3 группы по химической природе.

A. Пептидные гормоны состоят из небольшого числа аминокис­
лотных звеньев (гипоталамические факторы, некоторые гипофизар-
ные гормоны, гормоны щитовидной железы — кальцитонии, гормоны
кишечника и поджелудочной железы, нейропептиды). Для всех ха­
рактерно образование более крупных предшественников с последую­
щим специфическим расщеплением строго определенных пептидных
связей.

Б. Белковые гормоны включают семейства гормона роста и про-лактина. Они построены из 190 — 195 аминокислотных остатков.

B. Гликопротеиновые гормоны, а именно: фоликулостимулирую-
щий, лютеинизирующий и хорионический гонадотропный.

Большинство этих гормонов ранее получали из трупного матери­ала, однако в последние 2 — 3 десятилетия были разработаны генно-инженерные методы их получения.

Получение инсулина. Инсулин построен из двух полипептид­ных цепей А и В длиной 20 и 30 аминокислот, последовательность которых была установлена Сенгером в 1955 г. В организме животно­го эти цепи исходно являются частями одной белковой молекулы дли­ной 109 аминокислот — препроинсулина. При его синтезе в Р-клет-ках поджелудочной железы первые 23 аминокислоты служат сигна­лом для прохождения молекулы сквозь мембрану клетки; они отщеп­ляются, в результате образуется проинсулин длиной 86 аминокислот. Его молекула сворачивается таким образом, что начальный и конеч­ный ее сегменты сближаются, а центральная часть удаляется под дей­ствием ферментов. Так образуется инсулин. Роль центральной части сводится к правильному взаимному расположению двух цепей инсу­лина.

В опытах по экспрессии генов в клетках бактерий сначала из специализированных клеток животных, образующих специфический белок (например, инсулин), выделяли мРНК, кодирующую этот белок, затем с помощью обратной транскриптазы синтезировали нить ДНК, комплементарную мРНК. Вторую нить, комплементарную ДНК-ко­пии, получали с использованием другого фермента — ДНК-полиме-разы. На следующем этапе двухнитевую ДНК-копию встраивали в


плазмиду с использованием фермента концевой траисферазы, кото­рая наращивает на концах ДНК короткую последовательность иук-леотидов (для получения инсулина Гилберт наращивал на ДНК по­следовательность из четырех нуклеотидов с остатками цитозина). Плаз­миду расщепляли б специфическом участке рестрикционной эндо-иуклеазой. Для получения проинсулииа крысы Гилберт использовал pBR322: она характерна для клеток Е. coli и содержит два гена, кото­рые определяют устойчивость к пенициллину и тетрациклину. Рест-рикционная эндонуклеаза расщепляет плазмиду в средней части гена,кодирующего пенициллиназу. После этого на ее концы с помощью концевой трансферазы надстраивали последовательность из четырех нуклеотидов с остатками гуанина. Далее концы двух полученных мо­лекул ДНК могли соединяться благодаря взаимодействию компле­ментарных последовательностей нуклеотидов (гуанина с цитозином); с помощью бактериального фермента — ДНК-лигазы — осуществи­ли сшивку ДНК-вставки и плазмидной ДНК. Полученная новая коль­цевая плазмида представляла собой уже молекулу рекомбинантной ДНК.

Обычно такие молекулы не проникают сквозь клеточную стенку бактерий, однако разбавленный раствор хлористого кальция делает клетки проницаемыми, и некоторые из них приобретают новую плаз­миду. Эти клетки можно отобрать, используя генетический маркер устойчивости к антибиотику. Плазмида pBR322, использованная в опытах для осуществления синтеза инсулина в бактериальных клет­ках, была разрезана в средней части гена пенициллиназы; встроенный в нее фрагмент чужеродной ДНК нарушал синтез этого фермента, однако ген, обеспечивающий устойчивость к тетрациклину, оставался активным. Поэтому, если суспензию бактерий размазывали по поверх­ности питательного агара, включающего тетрациклин, каждая отдель­ная клетка, содержащая рекомбинантную ДНК и устойчивая к тетра­циклину, была способна к делению и образованию колонии, из кото­рой можно было получить клон клеток с чужеродной ДНК в составе рекомбинантной плазмиды. Бактериальные клетки этого клона синтезировали бы нужный белок, структура которого закодирована во введенной в них ДНК.

В 1979 г. Креа, Крашевски, Хироуз и Итакура из Национального медицинского центра «Хоуп» (Дуарте, Калифорния) за три месяца работы синтезировали гены, кодирующие А- и В-цепи инсулина. Они были собраны соответственно из 18 и 11 олигонуклеотидов. Синтез этих генов в свою очередь был осуществлен Гёдделем с сотрудниками в компании «Генентек». Каждый из них встраивали в плазмиду в конце гена р-галактозидазы Е. coli К 12. Синтезированные полипеп­тиды отщепляли от фермента, проводили их очистку и цепи соединя­ли для получения полной молекулы инсулина. Исходно в бактериях синтезировалось около 100 000 таких молекул на бактериальную клет-


Получение соматотропина. Гормон роста человека (ГРЧ), или соматотропин, секретируется передней долей гипофиза. Впервые он был выделен и очищен в 1963 г. коллективом во главе с Русом из гипофиза, полученного из трупного материала. Недостаток этого гор­мона приводит к гипофизариой карликовости, частота встречаемости которой — от 7 до 10 случаев на миллион человек (среди детей запад­ных стран она составляет 1 на 5 000 человек). Соматотропин облада­ет видовой специфичностью и является единственным средством ле­чения детей, страдающих от его недостатка. В 1981 г. из одного трупа удавалось получать 4 — б мг этого гормона в пересчете на конечный фармацевтический препарат. Но доступные его количества были огра­ничены и не удовлетворяли спросу.

Биосинтез соматотропина, состоящего из 191 аминокислотного остатка, был осуществлен Гёдделем и его коллегами в компании «Ге-иеитек». При синтезе ДНК на мРНК гормона с последующим пре­вращением ее в двухиитевую форму получается геи, кодирующий пред­шественник соматотропина. Он не расщепляется в бактериальных клетках с образованием активного гормона. Исследователи избрали следующий подход. На первом этапе они клонировали двухиитевую ДНК-копию мРНК и расщеплением рестрикционными эндоиуклеаза-ми получили последовательность, которая кодирует всю аминокислот­ную последовательность гормона, за исключением первых 23 амино­кислот. Затем клонировали синтетический полииуклеотид, соответ­ствующий аминокислотам от 1-й до 23-й, со стартовым ATG-кодоном в начале. Наконец, два фрагмента объединили вместе и подстроили к паре lac-промоторов и участку связывания рибосом. Конечный вы­ход гормона составил 2,4 мкг на 1 мл культуры, или 1 % от раствори­мых белков клеток этого генетически сконструированного штамма Е. соН (т. е. 100 000 молекул гормона на клетку). Синтезированный в бактериях ГРЧ обладал нужной молекулярной массой и не был связан с каким-либо бактериальным белком, от которого его необ­ходимо было бы отщеплять.

Однако синтетический гормон содержал на N-конце полипептид­ной цепи дополнительный остаток метионина. Эта лишняя аминокис­лота могла быть удалена при длительном выращивании кишечной палочки, но получаемые при этом количества соматотропина были слишком низкими: всего несколько миллиграммов на 1 л культу-ральной среды за 7 — 10 ч роста бактериальных клеток.

В июне 1980 г. исследователи компании «Генентек» представили данные, доказывающие, что соматотропин с дополнительным остат­ком метионина, синтезированный в генетически сконструированных клетках бактерий, обладает биологической активностью нативного гормона.

Получение рекомбинантных гликопротеиновых гормонов. Фол-ликулостимулирующий (ФСГ) и лютеинизирующий (ЛГ) гормоны синтезируются гипофизом и влияют на функцию половых желез.


Они используются при лечении болезней, связанных с нарушением функций половых желез, при лечении бесплодия.

ФСГ — гормон, необходимый для роста фолликулов, содержащих яйцеклетки, дальнейшее развитие которых контролируется ЛГ. По­следний действует на фолликулярные клетки и заставляет их выра­батывать стероидные гормоны.

Хорионический гонадотроппый гормон человека (ХГЧ) выраба­тывается наружными клетками бластоцисты. По своей функции он сходен с ЛГ.

Эти гликопротеидиые гормоны кроме пептидной части содержат и углеводную часть. Первая представлена а- и р-субъединицами. а-субъедицица идентична у всех 3 гормонов, а р-субъединица отличает­ся. Таким образом, получение ФСГ, ЛГ и ХГЧ генно-инженерным путем можно унифицировать, извлекая первую часть гена и к ней подстраивая вариабельную вторую часть. Для клонирования полу­ченных генов используют оплодотворенные яйцеклетки китайского хомячка, клетки эмбриона, клетки микроскопических грибов — дрож­жи и аспергиллы. Техника клонирования обычная.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-12-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: