Пусть на отрезке [ a,b ] задана непрерывная положительная функция y=f(x). Требуется вычислить .
Разделим отрезок [ a,b ] точками на n равных
частей длиной . Обозначим
значения функции y=f(x) в этих точках:
(рисунок 48).
Рисунок 48
Построение интегральных сумм заключается в приближённом вычислении площади «малой трапеции» .
Существует несколько методов приближённого вычисления определённого интеграла в зависимости от способа нахождения . Рассмотрим 3 из них.
Формулы прямоугольников
Заменим каждую полученную «узкую» криволинейную трапецию прямоугольником с основанием, равным длине отрезка, на которые разбит отрезок интегрирования (= h), и высотой, равной значению функции на левом конце отрезка разбиения, т.е. , при этом (рисунок 49).
Тогда получаем формулу
(8.12)
Если при построении прямоугольников в качестве высоты рассматривать значение функции на правом конце частичных отрезков, то , тогда получаем формулу:
(8.13)
Формулы (8.12) и (8.13) называются формулами прямоугольников.
Замечание. В случае возрастающей функции f (х) формулы прямоугольников дают приближённое значение интеграла с недостатком (8.12) и с избытком (8.13). Для убывающей функции всё наоборот.
Формула трапеций
Соединим точки и (рисунок 50) отрезком, тогда - это трапеция и её площадь равна: . Следовательно, площадь всей криволинейной трапеции приближённо равна:
(8.14)
Формула (8.11) носит название формулы трапеции.
Формула Симпсона (формула парабол)
В этом случае части кривой заменяют не прямыми линиями, как это было ранее, а дугами.
Пусть n (число делений отрезка [ a,b ]) – чётное число. На отрезке кривую заменяют параболой , проходящей через три точки , , (рисунок 51). Тогда приближённое значение интеграла вычисляется по формуле Симпсона, которая имеет вид:
|
. (8.15)
Рисунок 49 Рисунок 50 Рисунок 51
Пример 62. Вычислить определённый интеграл по формуле Ньютона-Лейбница, а затем приближённо по формулам прямоугольников, трапеций, Симпсона, разбив отрезок интегрирования на 10 равных частей. Все вычисления производить с округлением до третьего десятичного знака. Сравнить полученные значения интеграла.
Решение. а)Вычислим интеграл по формуле Ньютона-Лейбница:
Для вычисления интеграла по приближённым формулам составим таблицу значений подынтегральной функции:
Таблица 14
0,3 | ||||
0,6 | ||||
0,9 | ||||
1,2 | ||||
1,5 | ||||
1,8 | ||||
2,1 | ||||
2,4 | ||||
2,7 | ||||
3,0 | ||||
б) Для удобства вычислений формулу прямоугольников (8.12) перепишем в виде:
Тогда .
Так как подынтегральная функция возрастает на отрезке , то полученное приближённое значение интеграла даёт его значение с недостатком.
Абсолютная погрешность: .
Относительная погрешность: ,
Формулу прямоугольников (8.13) перепишем в виде:
.
Тогда (с избытком)
Абсолютная погрешность: .
Относительная погрешность :
в) Формулу трапеций (8.14) перепишем в виде:
.
Тогда .
Абсолютная погрешность: .
Относительная погрешность: .
г) Формулу Симпсона (8.15) запишем в виде:
.
Тогда
Абсолютная и относительная погрешности в этом случае равны 0.
Сравнивая полученные результаты, замечаем, что лучшее приближение к точному значению интеграла даёт формула Симпсона.
|