Теорема о пределе сложной функции.




Пусть F(x)=f(g(x)) - сложная функция.
Если предел g(x) при x стремящемся к x0 равен y0,
а предел f(у) при у стремящемся к у0 равен z0,
то тогда предел F(x) при x стремящемся к x0 равен z0.

 

Если функция у = f(x) имеет в точке а конечный предел b и не принимает значения b в некоторой о проколотой окрестности U(a) этой точки, а функция g(у) имеет в точке b конечный предел с, то сложная функция g(f(x)) имеет предел в точке а и он равен с.

 

 

73.Первый замечательный предел .

Теорема Первый замечательный предел равен

Доказательство. Рассмотрим два односторонних предела и и докажем, что каждый из них равен 1. Тогда по теореме 2.1 двусторонний предел также будет равняться 1.

Итак, пусть (этот интервал -- одно из окончаний базы ). В тригонометрическом круге (радиуса ) с центром построим центральный угол, равный , и проведём вертикальную касательную в точке пересечения горизонтальной оси с окружностью (). Обозначим точку пересечения луча с углом наклона с окружностью буквой , а с вертикальной касательной -- буквой ; через обозначим проекцию точки на горизонтальную ось.

Рис.2.27.Тригонометрический круг

Пусть -- площадь треугольника , -- площадь кругового сектора , а -- площадь треугольника . Тогда очевидно следующее неравенство:

Заметим, что горизонтальная координата точки равна , а вертикальная -- (это высота треугольника ), так что . Площадь центрального сектора круга радиуса с центральным углом равна , так что . Из треугольника находим, что . Поэтому Неравенство, связывающее площади трёх фигур, можно теперь записать в виде

Все три части этого неравенства положительны, поэтому его можно записать так:

или (умножив на ) так:

Предел постоянной 1 в правой части неравенства, очевидно, равен 1. Если мы покажем, что при предел в левой части неравенства тоже равен 1, то по теореме "о двух милиционерах" предел средней части также будет равен 1.

Итак, осталось доказать, что . Сперва заметим, что , так как равняется длине дуги окружности , которая, очевидно, длиннее хорды . Применяя теорему "о двух милиционерах" к неравенству

при , получаем, что

(2.3)

Простая замена переменной показывает, что и . Теперь заметим, что . Применяя теоремы о линейности предела и о пределе произведения, получаем:

(2.4)

Тем самым показано, что

Сделаем теперь замену ; при этом база перейдёт в базу (что означает, что если , то ). Значит,

но ( -- нечётная функция), и поэтому

Мы показали, что левосторонний предел также равен 1, что и завершает доказательство теоремы.

Доказанная теорема означает, что график функции выглядит так:

Рис.2.28.График

 

74.Второй замечательный предел .

Второй замечательный предел существует. Его значение -- число, лежащее между и .

Более подробное изучение числа показывает, что -- иррациональное число, несколько первых десятичных знаков которого таковы:

Для доказательства теоремы 2.15 нам понадобится следующая лемма; формула, в ней полученная, называется формулой бинома Ньютона.

Лемма 2.2 Пусть и -- натуральное число. Тогда имеет место формула

 

Заметим, что в дроби очевидно, сокращаются все сомножители в числителе и знаменателе, так что эта дробь равна 1. Аналогично, в предыдущем (не выписанном) слагаемом после сокращения получается коэффициент, равный , в третьем справа слагаемом -- равный , и т. д. Таким образом, коэффициенты в слагаемых, стоящих на одинаковых местах, считая слева и справа от края формулы, совпадают.

Доказательство. Доказывать утверждение леммы будем по индукции по параметру . При формула 2.2, очевидно, верна:

(Заметим, что при и формула 2.2 также хорошо известна:

и

Предположим, что она верна для , и докажем, что тогда она верна и при . Действительно,

При этом в квадратных скобках получается:

 
 
 

и так далее, то есть как раз то, что должно получиться в качестве коэффициентов формулы бинома Ньютона при .

Д оказательство теоремы 2.15. Рассмотрим последовательность и применим к формулу бинома Ньютона при и . Получим

Покажем, что последовательность ограничена сверху. Для этого заменим все дроби , ,..., на 1. Все эти дроби меньше 1, так что сумма в правой части формулы (Доказательство теоремы 2.15) увеличится:

Далее, заменим все числа в знаменателях этих слагаемых на 2; от этого правая часть ещё увеличится. Получим:

В правой части получилась сумма членов геометрической прогрессии. Она равна

Поэтому

что и означает ограниченность последовательности сверху числом 3.

Покажем теперь, что последовательность не убывает. Действительно, запишем формулу (Доказательство теоремы 2.15) в виде

В аналогичной формуле, написанной для вместо , во-первых, увеличится каждое из выражений в круглых скобках (так как вычитаемое уменьшится) и, значит, увеличатся все слагаемые, содержащие такие скобки. Во-вторых, число слагаемых увеличится на одно: добавится положительное слагаемое

Следовательно, при росте номера члены последовательности строго возрастают: при всех .

Применим теперь к возрастающей ограниченной сверху последовательности теорему о пределе монотонной ограниченной функции (теорема 2.13) и получим, что существует предел

причём число не больше постоянной 3, ограничивающей последовательность. Осталось заметить, что . Так как все последующие члены ещё больше, то и предел , на основании теоремы о переходе к пределу в неравенстве (следствие 2.7), не меньше числа , что и завершает доказательство теоремы.

Замечание 2.7 Можно также показать, что

(2.5)

однако строгое доказательство достаточно тяжело, и мы его здесь пропускаем.

В формуле (2.5) можно сделать замену , при этом база перейдёт в базу , и мы получим

 

Непрерывность и односторонняя непрерывность функции в точке. Основные понятия и определения.

Функция называется непрерывной в точке , если:

1. функция определена в точке и ее окрестности;

2. существует конечный предел функции в точке ;

3. это предел равен значению функции в точке , т.е.

Замечание. При нахождении предела функции , которая является непрерывной, можно переходить к пределу под знаком функции, то есть

Пример. Задание. Вычислить предел

Решение.

Ответ.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: