Приведение к каноническому виду




Любая квадратичная форма с помощью невырожденного линейного преобразования может быть приведена к каноническому виду, определенному формулой

 

, (VII.5)

 

где форма f ранга от n неизвестных; числа, , считаются положительными, но часть слагаемых формулы (VII.5) могут быть отрицательными.

При таком условии заменой , ; и , невырожденное линейное преобразование приводит квадратичную форму к нормальному виду, то есть

 

. (VII.6)

 

Общее число квадратов равно рангу квадратичной формы.

Существует много линейных преобразований, приводящих квадратичную форму к нормальному виду (VII.6), но с точностью до расположения знаков такое приведение единственное [3, 7].

Для квадратичных действительных форм выполняется закон инерции. Число положительных и отрицательных квадратов в нормальном виде, к которому приводится данная квадратичная форма с действительными коэффициентами действительным линейным преобразованием, не зависит от выбора этого преобразования.

Число положительных (отрицательных) квадратов в нормальной форме формы f называется положительным (отрицательным) индексом инерции (в формуле (VII.6) это k), разница между положительными и отрицательными индексами инерции называется сигнатурой формы f (в формуле (VII.6) она равна r - k).

Пусть дана квадратная матрица размерности n квадратичной формы f. Миноры, расположенные по главной диагонали этой матрицы, порядков 1, 2, …, n, последний из них совпадает с определителем матрицы , , то есть

, , …, ,

называются главными минорами формы f.

Теорема VII.1. Квадратичная форма f от n неизвестных с действительными коэффициентами тогда и только тогда будет состоять из положительных членов, когда все главные миноры положительны.

Пример VII.3. Квадратичная форма

положительно определена, так как все главные миноры матрицы положительны:

, , .

Приводить квадратичную форму к каноническому виду можно, как уже отмечалось, многими способами, но нормальный вид один. Покажем это на примере.

Пример VII.4. Привести к каноническому виду квадратичную форму [7].

Решение. Зададим линейное преобразование:

1) тогда получим .

Для другого преобразования имеем

2) тогда получим .

Нормальный вид квадратичной формы, которому соответствуют оба канонических вида, .

Упражнение. Проверить справедливость полученных формул непосредственной подстановкой преобразований 1) и 2) в исходную квадратичную форму.

Вполне естественно возникает вопрос: «Как найти матрицу линейного преобразования (оператора)?»

Прежде чем перейти к рассмотрению следующего примера, дадим некоторые пояснения. Не нарушая сущности общего подхода, ограничимся уравнением

,

где правая часть есть квадратичная форма, заданная в декартовой системе координат . С другой стороны, это выражение определяет линию второго порядка. Ясно что если правая часть последнего равенства представлена суммой квадратов переменных

,

то имеем канонический вид квадратичной формы.

Оба уравнения будут описывать одну и ту же линию второго порядка, если в форме h сохранен прежний масштаб. Для получения канонического вида H обычно используют характеристическое уравнение. Недостаток такого подхода состоит в том, что неизвестна связь между системами координат и . Образно говоря, мы не знаем расположение линии L в системе координат , если она записана в каноническом виде h. Такой переход можно осуществить поворотом осей системы координат на угол j (рис. VII.1), то есть перейти от координат x, y к x 1, y 1 по формулам

 

 

Рис. VII.1

 

Для обратного преобразования необходимо заменить угол j
на - j.

Чтобы узнать расположение линии, мы должны найти преобразование координат, приводящее равенство H к виду h. Заметим, что для сохранения масштаба следует перейти к ортонормированной системе координат.

Пример VII.5. Задана квадратичная форма в декартовой системе координат

 

. (VII.7)

 

Требуется привести ее к каноническому виду, то есть записать ее вид в системе и найти линейное преобразование. Получить нормальный вид квадратичной формы.

Решение. Составим симметричную матрицу линейного преобразования (оператора) A

.

Построим характеристический многочлен и найдем собственные числа и собственные векторы. Затем будем последовательно выполнять задания примера. Имеем

Характеристическое уравнение представляется равенством

.

Вычислив определитель матрицы, получим многочлен , корни которого , являются собственными числами. Запишем канонический вид формы (VII.7):

.

Найдем линейное преобразование, то есть установим связь между системами и . Так как корни действительные и различные и нет нулей, то преобразование невырожденное. Найдем собственные векторы в базисе (векторы будем представлять столбцами). Для этого решим систему уравнений

 

, (VII.8)

 

определенную для каждого из собственных чисел.

При , из (VII.8) имеем матричное уравнение

.

Полагая, с необходимостью, , получим

при , имеем . Первый собственный вектор найден , его длина .

При имеем

или

Прибавляя к первому уравнению второе и, замечая, что если полученное уравнение решать как систему с третьим, то с необходимостью перейдем к первому собственному вектору. Остается составить систему уравнений из суммы двух первых и второго уравнения, тогда получим

Полагая , после упрощений получим систему

из которой определяем , . Второй собственный вектор найден:

, .

При , выполняя аналогичные действия, при получим третий собственный вектор

, .

Для составления ортонормированной матрицы преобразования нормируем векторы . Получаем ортонормированную матрицу оператора A, которая состоит из вектор-столбцов с нормирующим множителем . Таким образом, матрица невырожденного линейного преобразования имеет вид

.

 

Для записи линейного преобразования воспользуемся формулой , из которой имеем

Подставляя вместо , , их правые части в перноначальную квадратичную форму f, получим ее канонический вид.

Можно также применить скалярное произведение для получения канонического вида квадратичной формы, если воспользоватьься формулой

.

Все остальные слагаемые являются произведениями ортогоналных векторов, и потому их скалярное произведение равно 0.

Нормальный вид квадратичной формы получим из канонического вида заменой , , , тогда .

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: