Диаграммы путей играют существенную роль в процессе структурного моделирования. Диаграммы путей напоминают используемые блок-схемы. Они изображают переменные, связанные линиями, которые используются для отображения причинных связей. Каждая связь или путь включает в себя две переменные (заключенные в прямоугольник или овал), соединенные стрелками (линиями, обычно прямыми, имеющими стрелку-указатель на одном конце) или дугами (линиями, обычно искривленными, без стрелок указателей).
Путевые диаграммы удобнее всего представлять в качестве инструмента для указания, какие переменные вызывают изменения в других переменных. Однако этого описание не является абсолютно точным. Можно дать более точное описание.
Рассмотрим классическое линейное регрессионное уравнение –
Y = aX + e.
Его представление в виде пути, показано на рисунке 7.2.
Рис. 8.2
Такие диаграммы устанавливают простое взаимно-однозначное отображение, сохраняющее структуру модели, также называемое изоморфизмом. Все переменные в системе уравнений размещаются на диаграмме в прямоугольниках или овалах. Каждое уравнение отображается на диаграмме следующим путем: все независимые переменные (переменные в правой части уравнения) имеют стрелки, указывающие на зависимые переменные. Весовые коэффициенты располагаются вблизи от соответствующих стрелок. Диаграмма снизу содержит представление системы простых линейных уравнений в виде диаграммы путей.
Отметим, что кроме представления линейных зависимостей в виде стрелок, диаграмма также содержит некоторые другие выражения.
Во-первых, дисперсия независимых переменных, которая должна быть задана для проверки модели структурных связей, показаны на диаграмме с использованием изогнутых линий без стрелок. Такие линии мы называем дугами. Во-вторых, некоторые переменные, изображены в овальных, а не в прямоугольных рамках.
|
Явные переменные (т.е., переменные, которые можно измерить непосредственно) на диаграммах изображаются внутри прямоугольников. Латентные переменные (т.е., которые нельзя непосредственно измерить, как, например, факторы в факторном анализе, или остатки в регрессионном) изображаются внутри овалов или окружностей.
Например, переменная E на диаграмме сверху может рассматриваться как остаток линейной регрессии, когда значение Y предсказывается по значению X. Такие остатки не наблюдаются непосредственно, но в принципе могут быть вычислены по известным значениям Y и X (если a известно), поэтому они называются латентными (скрытыми) переменными и помещаются внутри овалов.
Мы рассмотрели очень простой пример диаграммы путей. В общем случае, мы заинтересованы в проверке намного более сложных моделей. Если же система уравнений становится слишком сложной, исследователи обычно переходят к рассмотрению ковариационных структур. В конце концов, модели становится настолько сложной и запутанной, что они перестают понимать ее основные принципы. Но есть доводы, которые говорят о том, что навыки проверки причинных моделей слабо связаны с проверкой линейных моделей. Переменные могут быть связаны нелинейно. Они могут быть линейно связаны по причинам, не относящимся к тому, что мы выбрали в качестве причины в нашей модели.
|
Древнее изречение «наблюдаемая зависимость не означает причинной зависимости» остается верным, даже для сложной и многомерной корреляции. То, что причинное моделирование действительно позволяет исследовать, это насколько данные отличаются от соответствующих выводов причинной модели (а именно, от предполагаемой ковариационной структуры). Если система линейных уравнений, изоморфная диаграмме путей, хорошо согласуется с данными, это позволяет оставить модель для дальнейшего анализа или использования, но не доказывает ее истинность.
Хотя диаграммы путей могут использоваться для отражения причинных связей в наборе переменных, они не предполагают реального наличия таких связей. Диаграммы путей часто используются для простого и изоморфного представления системы линейных уравнений. По этому, они могут выражать линейные связи вне зависимости от того, имеются ли на самом деле описанные причинные связи. Следовательно, хотя мы интерпретируем диаграмму на рисунке сверху как «X влияет на Y», диаграмма также может обозначать графическое представление линейного регрессионного соотношения между X и Y.
8.4. Контрольные вопросы к главе 8
1. Перечислите задачи, для решения которых применяются методы структурного моделирования.
2. Нарисуйте блок-схему основных этапов структурного моделирования.
3. Объясните суть путевых диаграмм.
4. Какие переменные являются независимыми, а какие зависимыми на диаграммах путей?
5. Всегда ли построенные зависимости отражают реальные связи между переменными?
Глава 9